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Received 3 September 1974 

Abstract Ordered operator expansions for operators forming physically important low- 
dimensional Lie algebras are derived in a simple unified way. Starting with the Zassenhaus 
formula for the disentangling of exponential operators, series expansions of both undis- 
entangled and disentangled exponentials and comparison of the operator coefficients of 
equal powers of an ordering parameter a leads to ordered operator expansions. This 
‘comparison method’ gives an alternative simple derivation of some already known formulae 
and a number of new formulae in the physical and chemical applications of the harmonic 
oscillator and for master equation problems with nearest-neighbour transition probabilities. 
The ’comparison method’ cannot be applied to the angular momentum algebra directly. 
By a slight modification it can be used to derive from one matrix element or trace of 
j t j :?  all possible combinations k ,  I ,  n by simply comparing powers of ordering parameters. 

1. Introduction 

It is often necessary to raise a function of non-commuting operators to certain powers 
or to rearrange operators in a certain order to facilitate calculations of traces and 
matrix elements. 

For operators A, B with the commutator 

[A, B] = AB-BA = ci (1) 

where 1 is the identity operator and c a so-called c number, Yamazaki (1952) gave the 
following formula without proof : 

[mi21 m - 2 k  [ c / 2 ) k m ! @ A m - 2 k - s  

k = O  s = o  k ! s ! ( m - 2 k - s ) !  . 
The bracket symbol [ m / 2 ]  means in this case the integer less than or equal to ( 4 2 ) .  
The same formula was derived independently by Cohen (1966) solving an eigenvalue 
problem and by Wilcox (1967) using normal ordering techniques. A second important 
formula was also derived by Cohen and by Wilcox : 

In both cases the mathematics is fairly complicated. 
The aim of the present paper is to investigate systematically ordered operator ex- 

pansions from only one formula, the Zassenhaus formula for disentangled exponential 
operator expressions. The very complex exponential commutator expressions are 
reduced greatly if the operators form a low-dimensional Lie algebra. The non-ordered 
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and the disentangled exponentials are expanded in series in terms of an ordering scalar 
a and the operator coefficients of equal powers of a are compared. The method is 
therefore called the ‘comparison method’. Only some formulae of the calculus of non- 
commuting operators and elementary algebra are needed. The plan of the article is 
as follows : $ 2  gives the Zassenhaus formula, the necessary operator techniques and the 
comparison method. In $ 3 a three- and a four-dimensional Lie algebra, which is essen- 
tially the harmonic oscillator algebra, are treated. Section 4 discusses a two-dimensional 
Lie algebra. In $ 5 the limits of the ‘comparison method’ are shown for the ‘split three- 
dimensional’ angular momentum algebra, but by the same method, traces and matrix 
elements of arbitrary products of angular momentum operators are derived. Section 
6 presents a discussion. 

As this paper is mainly technical, each section contains a brief sketch on various 
applications of the results in physics and chemistry. 

2. Zassenhaus formula, operator calculus and comparison method 

2.1. Algebra of non-commuting operator 

Magnus (1954) in an excellent review article discussed the Baker-Campbell-Hausdorff 
(BCH) formula for uniting two exponential operators 

expAexpB = exp{a+B+1/2[A,B]+1/12[A, [A,B]l+1/12[[AlB],B]+. . . } .  (4) 

The commutator series in the exponent was extended by Richtmyer and Greenspan 
(1965) to order 512 by computer and published to the tenth order. The expansion is 
not unique due to the existence of the Jacobi identity and higher identities : 

[[A, B], C]+[[C, A], B]+[[B, e], A] = 0. ( 5 )  

The dual of the BCH formula, the Zassenhaus formula, has received less attention in the 
literature. 

exp(A + B) = exp A exp B exp C, . . . exp Cm . . . (6) 

only e, and e, are known, but higher e, can be calculated from a recursion formula 
given by Wilcox (1967)in his extensive review on exponential operators. For convenience 
we derived e, and e,, 

c, = - 1/2[A,B] (7) 

C, = 1/3[B, [A, A]] + 1/6[A, [A, 811 (8) 

(9) C4 = - 1/24{ [A, [A, [A, B]]] + 3[B, [A, [A, B]]] + 3[B, [B, [A, B]]]} 

C5 = - 1/120{ [A, [A, [A, [A, 81111 + 8[A, [A, [A, e,]]] + 24[A, [A, [B, C,]]] 

+ 24[A, [B, [b, t , ]]]  + 8[B, [B, [B, e,]]] + 36[A, [A, e3] ]  

+ 72[A, [B, e,]] + 36[B, [B, e,]] + 72[e2, e 3 ]  + 96[A, e,] + 96[8, e,]} (10) 

to show the increasing complexity of the e,. 
For 

[A, [A, B]] = [ B ,  [A, B]] = 0 
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the C, terminate after m = 2 leading to an often used equation in statistical and phonon 
physics : 

(12) exp{a(A + B)} = exp a A  exp a b  exp( -a2c /2) .  

The exponential of an operator is defined by the series expansion : 

a’ am - 
exp(aA) = l+aA+IA’+...-Am 2.  m! 

We need some further formulae of operator calculus, which are treated in detail by 
Wilcox (1967) and by Louise11 (1973) : 

a’ 
2 !  

exp(aA)B exp( - a A )  = 8 + a[A ,  B] + -[A, [A, 811 + . . . 

Instead of the Zassenhaus formula Feynman’s (1951) ordering calculus can be used. 
In a careful investigation Fujiwara (1952) showed that this calculus also leads to high- 
order exponential operator commutators. Another method of operator calculus is the 
parameter differentiation technique by Kirzhnits (1967) who gave in the appendix of 
his book a list of I?, which can be related to the C, of the Zassenhaus formula. Though 
no strict proof can be given, preliminary calculations show that the three approaches 
to the exponential disentangling problem lead to essentially the same results. 

2.2. The ‘comparison method’ 

The principle of the comparison method is trivial: the disentangled and the undisen- 
tangled forms of equation (6) are expanded in terms of an ordering scalar quantity a 
and operator coefficients of equal powers of a are compared : 

exp{a(A + B ) }  = exp a A  exp a 8  exp a’C, exp a3C3 . . . (17) 

Example 1 

(A++)’ = A 2 + 2 A B + B ’ + 2 C 2  (19) 
( A  +B)3 = A3 + 3AzB+ 3AB2 + B3 +6AC, +6BC2 + 6C3. (20) 

One sees that the expressions are already in a partial ordered form with the A operators 
standing left from the B operators. The difficulty comes from the commutator operators 
e,. It will be shown subsequently that for some low-dimensional Lie algebras of 
physical interest the C, are operator functions of only one operator type leading to 
completely ordered forms. 
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2.3. High-order commutators 

It is often difficult to find high-order commutators. Guenin (1968) derived two formulae 
which can be applied to this and related problems. The formulae are : 

and 

We shall give a simple derivation and a slight amplification by the comparison method. 
Starting with equation (14) we get, after multiplication from the left with exp( - as), 

* am 

m = O  m .  
A exp(-aB) = exp(-aB) c ,{Bm, A) - 

series expansion leads to : 
o c m  ak  + m 

(-U)” - ’n - CO 

2 -AB - 2 (-l)k--Bk{&”A}- 
n = O  n !  k = O  m = O  k ! m !  

and 

n = O  

Because of equation (1 5 )  we get : 

Amexp(-aB) = exp(-aB) 

thus allowing the calculation of general commutators of am&. 
Example 2 

A2B2 = A@, [B, A]] + 2[B, A y  + [B, [B, A]]A - 2BA[B, A] - 2B[B, A]A + B2A2.  

3. Three- and four-dimensional Lie algebras 

3.1. A three-dimensional Lie algebra 

Wei and Norman (1963) in their interesting article on the Lie algebraic solution of linear 
differential equations discussed several important low-dimensional Lie algebras finding 
realizations in physics. We make no use of special Lie aIgrbraic properties, but use 
them only as classification. A Lie algebra is defined as {fij, fi,, , , . , f i r }  with the 
commutators 

r =  1 

where v i k  are structure constants. The simplest non-Abelian three-dimensional Lie 
algebra is formed by {A, B, I> with the commutators 

[A,B] = ci,  [A,i] = [BJ] = 0. (29) 
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Ordered operator expansions for this algebra are equations (2) and (3). Using equation 
(12) and the comparison method leads to 

Example 3 

( A  + B ) 3  = A3 + 3A2B+ 3AB2 + B3 - 3cA - 3c8. 

As the comparison presents no difficulties only disentangled operator expressions (DO) 
are written down in the subsequent sections. 

The implicit form of equation (3) is derived from 

An application of equation (32) is the commutator 

[ A , B k ]  = c k B k - ' .  (33) 

This derivation of equations (2) and (3) has the advantage that it can be repeated im- 
mediately from well-known operator formulae. It is more difficult to memorize the 
compact formulae (2) and (3). 

3.2. Derived higher-dimensional algebras 

Higher-dimensional algebras can be constructed by : (A ,  8, B2 . . . , Bk . . , , I )  with the 
commutators 

[A, 8'1 = c k B k -  ', [A, I] = [ B k ,  i] = 0. 

The cm are up to m = 4 

- -$-kBk-l 

- 1 2k k - 1 ) @ - 2  
2 -  

3 - g C  ( 

- - L 3  - t 4 ~  k ( k -  l ) ( k - 2 ) 8 k - 3 .  

(34) 

For finite k the Zassenhaus formula terminates leading to a completely ordered expan- 
sion. 

Example 4 

( A  + B312 = A 2  + 2 2 8 3  - 3cB2 + B6. 
The algebra can be further enlarged by considering {ABm, 8, B2 . . . , B k . .  . , f} with 

(39) [A&, @] = kcB(k+m- 1) 

The application to operator products (28"' + Bk)s is obvious. The first term is not com- 
pletely ordered but can be ordered with formula (32). 
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3.3. A four-dimensional Lie algebra 

Closely related to the three-dimensional algebra above is the four-dimensional algebra 
{&' + p', &, P, I} with 

[P' + Q', &I = -2ihP 

[Q, I] = [P, i] = [P'+ Q', I] = 0. 

This is essentially the harmonic oscillator algebra which can be written in occupation 
number representation (ONR) (Messiah 1964) 

{a+a, a + ,  a, I} 

[a+a,a] = - a ;  
[ a ,a+ ]  = I ;  

with 

(41) [s+a,a+]  = a+ 
[a, I] = [ a+ ,  i] = [a's, i] = 0. 

The diagonal number operator 8'8 with eigenvalues n from zero to infinity is very im- 
portant. It is often necessary to write ( d + d ) k  in normal or antinormal ordered form with 
the d +  operators standing left or right from all d operators. This cannot be achieved 
directly using a formula given by Schwinger (1965) 

as the exponentials in the sum lead to difficulties?. We treat the more general case of 
the commutator (1) and derive some auxiliary formulae: 

exp(aAB) exp(8A) = exp@ exp( - ac)) exp(aAB), 

exp(aA8) exp(gB) = exp(@ exp(ac)) exp(aAB), 

(DO) 

(DO) 
(43) 

by means of equation (16). Arbitrary powers (AB)k can be commuted with arbitrary 
powers Am, Bn. 

Example 5 

(AB)"A4 = A'((AB)" - 1 6 ~ ( A 8 ) ~  +96c'(AB)' - 256c3(Afi) +256c4). (44) 
Writing 

(AS)k = (AB)k- 'AB (45) 
and commuting with A leads after repetitions to the expressions wanted. 

The reverse equations for ONR operators were derived by Bloch and De Dominicis (1958). 

t After completion of this article a very recent note came to my attention: J Katriel 1974 Lett. Nuouo Cim. 10 
565-6 where he proved the disentangling of powers of R. 
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3.4. Applications 

We list some applications of the operator formulae given above. The harmonic oscillator 
as an exactly solvable quantum system finds wide applications from atoms to nuclei 
and quarks (Moshinsky 1969). It is furthermore important for coherent states in quantum 
optics (Cahill and Glauber 1969) and in solid state physics (Kohn and Sherrington 1970). 
Excitations in solids like phonons (Haken 1973), excitons and polarons (Kuper and 
Whitfield 1963, Devreese 1971) and magnons (Mattis 1965) can be treated in this frame- 
work. Molecular vibrations including vibrational and rotational resonances can be 
handled easily (Birss and Choi 1970). 

4. A two-dimensional Lie algebra 

4.1. Sack’s identity 

The only non-Abelian two-dimensional Lie algebra was discussed by Sack (1958) in 
connection with the ‘quantum mechanical shift operator’. The algebra (8, pi has 
the commutator 

[rz, E] = yp, (47) 
with y a c number. 

tion technique : 
The DO given by Sack can also be derived by Kirzhnits’ (1967) parameter differentia- 

A further derivation is also possible by a straightforward application of the Zassenhaus 
formula. The commutators up to  m = 5 are:  

B Y  - c2 = --Y 
2 

BY2 - c --Y 
6 3 -  

BY3 - c - - - Y  
24 4 -  

(49) 

BY4 - c --Y - 120 
The exponentials cm can be summed up and written as equation (48). It can be applied 
to the calculation of ordered expressions of (8 

Example 7 

(8+ P ) 3  = rz3+3322-3y8EP33yP2+y2E+ P3 

Using the second form of (48) the reverse ordering can be performed with all E operators 
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standing left of all rz operators. Commutations of zkp are tedious in straight forward 
calculations. They can be calculated easily from the DO 

exp(a.2) exp(fiP) = exp(a2) exp(fiP) exp( - a 2 )  exp@) 

= exp(fi exp(ay)P) exp(a8). (51) 

Example 8 
S4P4 = P4rZ4+ 16P4iZ3 +96y2P4S2  +256y3P4S +256y4P4. (52) 

4.2. Derived Lie algebras 

From the two-dimensional Lie algebra some related Lie algebras can be derived and 
used in ordered expansions. It is { ?,8 P} with 

[8 ,rzP] = yrzP (53) 

two-dimensional allowing application of Sack's identity (48) to expressions (2 + $ ? ) k .  
For similar expansions (2 P+ P)k the full Zassenhaus formula must be used because of 
the commutator 

[SP, PI = yP2. (54) 

The first e,,, are: 
- - - y 2  Y A  

2 2 -  

2 

c, = p 3 .  

A further two-dimensional Lie algebra is {2, P k }  with 

[rz, P k ]  = kyPk 

allowing the ordered expansion of (2 + Pk),  by means of the equations above. 

( 5 5 )  

4.3. Applications 

Wei and Norman (1963) gave two applications in chemical physics. They showed that 
the Landau-Teller transition probabilities of a system of simple harmonic oscillators 
are a realization of the above algebra in an infinite dimensional space. By a suitable 
definition of raising and lowering operators an isomorphism between these operators 
and those of the abstract algebra can be proved. A second realization is provided by the 
kinetics of the deuterium exchange reaction. It seems that further problems in statistical 
mechanics with nearest-neighbour transition probabilities can be reduced to the alge- 
braic problem discussed above. Moreover, generating functions and addition theorems 
for special functions can be treated in terms of operators forming low-dimensional Lie 
algebras (Kaufman 1966). 

5. Angular momentum algebra 

5.1.  Failure of the comparison method for angular momentum 

As angular momentum algebra is important in many physical applications, one is 



Ordered operator expansions by comparison 151 

especially interested in the 'simple split three-dimensional' Lie algebra {e, E ,  A }  with 
the commutators 

[E, E] = A ;  [8 ,8]  = 2 e ;  [E,A] = -2E. (57) 

[A ,&]  = c; [A, C] = -bA;  [B,c] = bB ( 5 8 )  

This algebra is a special case of 

(b  = c number). 

Kirzhnits (1967) gave a DO of exp(a(2 + 8)) which he found by parameter differentiation 
and comparison of the coefficients of identical operators. The same result can be also 
derived by repeated application of equation (48) : 

exp(a(A + B)) = exp(g,B) exp(g,c) exp(g,A) (59) 

with 

g, = g, = (2/b)'l2 tanh((b/2)",a) 

g, = (2/b) In c0sh((b/2)'~*a). 

The difficulty arises from g,, as in the expansion of In ~osh( (b /2) '~~a)  the coefficients 
cannot be compared. A similar problem arose in equation (42). Thus, the 'comparison 
method' cannot be applied directly to the angular momentum algebra. 

5.2. Some ordering formulae for angular momentum 

Calculations with angular momentum operators in the spherical and Cartesian basis 
are simplified in the coupled boson representation (CBR), introduced by Schwinger (1965) : 

j +  = ii:ii-; 1- = a+i i+ ;  jL = (1/2)(dIii+ -& 'a - )  = (1/2)(fi+ - e - ) .  (61) 

The a : ,  ii, are two-dimensional harmonic oscillator creation and annihilation operators 
with 

(62) 
A +  P , , a , I  = 1; [ a + , a - ]  = p ; , a : ]  = [ a + , i i ! ]  = [ a - , a : l  = 0. 

The following DO are useful in the comparison method and are derived by means of 
equation (16) : 

exp(aj+) exp(pil1) exp(yii+) = exp(pii1) exp(yii+) exp(-a;lii-) exp(aj+) 

exp(aj + exp(pii ? ) expbiii - = exp(jii ? ) exp(apii ) exp(yii -) exp(aj + 

exp(aj - )  exp(pii :) exp(ya+) = exp(8ii 1) exp(apii?) exp(yii +)  exp(aj -1 
exp(aj -) exp(pii ? ) exp(yii - ) = exp(pii? ) exp(y8 - ) exp( - ayii + ) exp(aj-) 

exp(aA +)  exp(bj +)  = exp(@ + exp a)  exp(afi +) 

exp(afi - )  exp@ +)  = exp(pj + exp( -a))  exp(afi-) 

exp(ah +) exp(pL) = exp(pj - exp( -a) )  exdafi + )  

exp(afi -1 exp(pj -) = exp(8.I- exp(a)) exp(aA - ). 

(64) 

These expressions can be used for the commutation of st]', . An important application 
is the ordering of 3$j'- ,  so that the expression consists of a diagonal part and powers 
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of j +  standing right of all other operators. It is with k > 1 

(65) 

j'!+-' is commuted to the right by means of the formulae above. It is a matter of taste 
whether j 5 - I  is commuted with individual powers of a:, (a:)"' or with the number opera- 
tors A,. In the latter case the formulae of Bloch and De Dominicis (1958) must be applied 
in addition. 

-k  ' I  - j k - l j l  jl = j k - l ( a + l a l  61 a + I )  J + J -  - + + - + + + - -  

5.3. Matrix elements and traces of products of angular momentum operators 

Traces of products of angular momentum operators were calculated in two comprehen- 
sive articles by Ambler et a1 (1962a, b) using conventional angular momentum techniques. 
Rose (1962) used recoupling and graphical methods. The coupled boson representation 
and operator algebra were used by Witschel(1971). Here the 'comparison method' will 
be applied. Whereas the calculation of matrix elements of j t j ' - j :  in the spherical 
basis is simple, it presents many difficulties for jkj$ in the Cartesian basis. We proceed 
in the same way as for the Lie algebras above using CBR. The essential point is the pro- 
perty of ONR, 8,100) = 0, which was already used for the calculation of the rotation 
matrices di,,,,(O) (Grosswendt and Witschel 1972). The angular momentum eigenvectors 
are 

(66) I jm) = ( j  + m) ! ( j -  m)! - 1'2(a:y"m(aT)i-m(oo). 

M = ( jml  exp(2aj,) exp(2BjJ exp(2yjZ)ljm') 

The matrix element to be calculated 

(67) 
reads in CBR 

M = FG,,,, (00(dJ+? " ' a j I m  exp { a(a : tl - + d ! d + )) ex p{ - Bi(a 1 I? - - d ii + )} 

x exp{;'(dIb + - a l a  -)} (ii"j+""(a2y'-"loo) 

FG,,,, = { ( j + m )  !( j - m) !( j + m') !( j - m') ! } - l". 

(68) 

(69) 
Because of the properties of the Lie algebra discussed in equations (59) and (60) the 
exponentials cannot be disentangled, but they can be moved to the right and the property 
of ONR mentioned can be used. The algebra of the transformation is omitted. The final 
result is : 

M = F$,,,.(00laj,"a<--"{(a1dI +a$?)  expy)j'"{(a,d: +a4d2) exp( -y))j-"'pO) (70) 
with 

a1 = (1/2){(1 +i)cosh(a+B)+(l -i)cosh(a-B)) 

a2 = (1/2){(1 +i)sinh(a+B)+(l-i)sinh(a-/?)} 

a3 = (1/2){(1-i)sinh(a+B)+(1+i)sinh(a-~)) 

a4 = (1/2){(1 -i)cosh(a+B)+(l +i)cosh(a-B)}. 

(71) 

As a: and a' commute, the operator expressions can be evaluated by the ordinary 
binomial formula. M is different from zero only for equal powers of the corresponding 
creation and annihilation operators leading to the remaining matrix element M' : 

(72) M' = (00((~9,)~(a:)~loo> = k ! .  



Ordered operator expansions by comparison 153 

For the comparison method both forms of M ,  equations (68) and (71) are expanded 
and the coefficients of equal powers of a, p and y are compared. Thus it is possible to 
derive from one Mi: all possible matrix elements (jm13k,.?Lj:I j m ’ )  by elementary 
algebra. The powers of the hyperbolic functions are manipulated by ordinary multi- 
plication and Des Moivres’ theorem. For some applications which are summarized 
below it is necessary to calculate the trace, ie the sum of diagonal elements of these 
operator products. If the diagonal matrix elements of the (2j +1) m-values are calculated, 
the trace can be formed by summing up the individual matrix elements. Only book- 
keeping problems limitate the application of the method. An example will illustrate 
the technique. 

I ,  

Example 9 

M : $  = (1,OI exp(2uj,) exp(2pjy)11, 0 )  = ula4+u2u3  

= 1 + 2u2 + 2p2 + 2/3u4 + 4u2p2 + 2/3p4 +4/45a6 + 4/3a4P2 

+ 4/3a2P4 + 4/45p6 + . . . 
M : ; :  = ( I , I I  exp(2ajX)exp(2pj,)(l, 1) = a: 

= 1 + a 2  + 2iup + p2 + 1/3u4 + 4i/3u3p + 4i/3aP3 + 1/3P4 + 2/45a6 

+4i/15u5p+8i/9u3p3 +4i/15ap5 +2/45p6+. 
Ml. - l  - 

1, - - ( 1, - 1 I exp(2aj,) exp(2pj,)l 1, - 1 ) = U: 

= 1 +U’ - 2iup + p2 + 1/3u4 - 4/3iu3p -4i/3ub3 + 1/3p4 + 2/45a6 

- 4i/15u5p - 8i/9u3p3 - 4i/l 5uP5 + 2/45p6 + . , 
If we abbreviate the trace by (( > > j  it is : 

<<j:>>, = <<J,2>>1 = 2 

<<J,J,h = 0 

< < J 3 , > > 1  = <(j,j ,”>>l = 0 

(<j,”>>l = <<j;>>1 = 2 
<<jy;>>, = 1. 

<<j,”>>, = <<j,”>>l = 2 

<<jlj,>>l = <<j,j:>>, = 0 

<<jy;>>, = <<j:j,‘>>, = 1 

<<jy;>>, = 0 

(76) 

From general invariance properties of angular momentum traces it follows that they are 
different from zero only if: 

j ;  with a = x,  y, z ;  k even 

j t j :  with a,  b = x,  y ,  z ;  k ,  1 both even 

3tjbj: with a, b, c = x, y ,  z ;  k, I ,  n all even k ,  1, n all odd. 
Comparison with these restrictions and the extended tables by Ambler et a1 (1962a, b) 
shows agreement. 

5.4. Applications 

Biedenharn and Van Dam (see Schwinger 1965) give in their reprint collection a com- 
prehensive bibliography on angular momentum and its application to physics and 
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chemistry. Traces of products of angular momentum operators are important for the 
computation of thermodynamic properties of paramagnetic salts, especially at low 
temperature. This and related topics are covered in the authoritative monograph by 
Abragam and Bleaney (1970). Applications to magnetic problems together with an 
introduction to CBR are discussed by Mattis (1965). An application in molecular spectro- 
scopy is the calculation of asymmetric top sum rules without (Louck 1963), and with 
centrifugal distortion (Witschel 1971). 

6. Conclusion 

Starting with the Zassenhaus formula for disentangling of exponential operator ex- 
pressions a number of ordering formulae could be derived in an elementary unified way 
using comparison. This technique thus supplements more sophisticated operator 
orderings. Some formulae are only rederived but some are apparently new. The ad- 
vantage of the method is that only four operator formulae and elementary algebra is 
needed to avoid cumbersome and error proned operator commutations. 
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